Conditional Generative Adversarial Networks

Jia-Bin Huang

Virginia Tech

ECE 6554 Advanced Computer Vision

Today's class

- Discussions
- Review basic ideas of GAN
- Examples of conditional GAN
- Experiment presentation by Sanket

Why Generative Models?

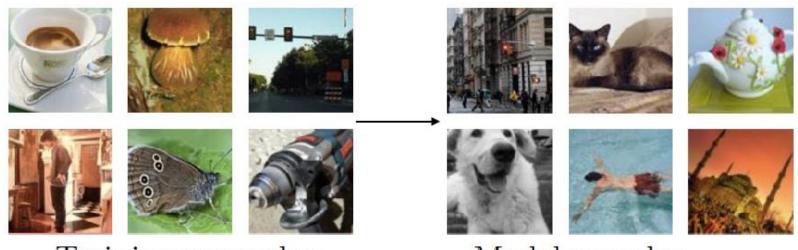
- Excellent test of our ability to use highdimensional, complicated probability distributions
- Simulate possible futures for planning or simulated RL
- Missing data
 - Semi-supervised learning
- Multi-modal outputs
- Realistic generation tasks

(Goodfellow 2016)

Generative Modeling

• Density estimation

• Sample generation

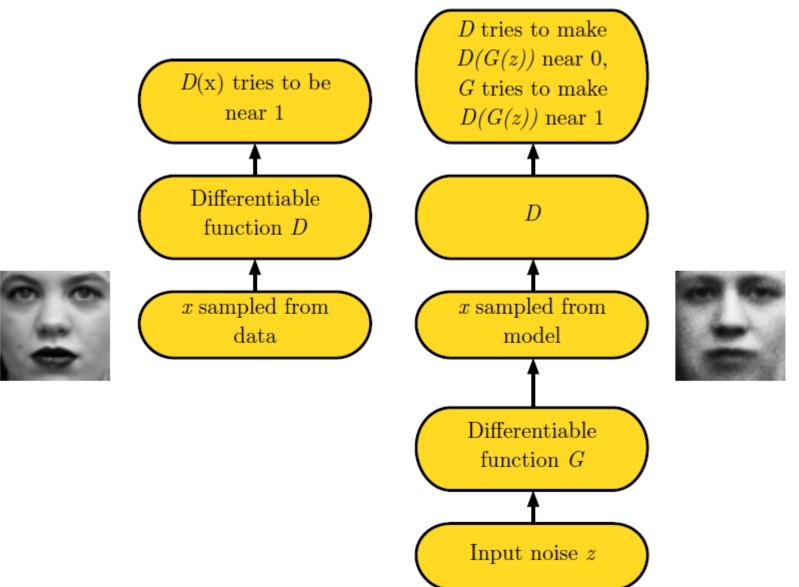


Training examples

Model samples

(Goodfellow 2016)

Adversarial Nets Framework



Training Procedure

- Use SGD-like algorithm of choice (Adam) on two minibatches simultaneously:
 - A minibatch of training examples
 - A minibatch of generated samples

• Optional: run *k* steps of one player for every step of the other player.

Minimax Game

$$\begin{aligned} J^{(D)} &= -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z})\right)\right) \\ J^{(G)} &= -J^{(D)} \end{aligned}$$

- Equilibrium is a saddle point of the discriminator loss
- Resembles Jensen-Shannon divergence
- Generator minimizes the log-probability of the discriminator being correct

(Goodfellow 2016)

Discriminator Strategy

Optimal discrimator

 $\frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)}$ D(x) =Discriminator Data Model distribution x

Estimating this ratio using supervised learning is the key approximation mechanism used by GANs

Non-Saturating Game

$$\begin{aligned} J^{(D)} &= -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z})\right)\right) \\ J^{(G)} &= -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log D\left(G(\boldsymbol{z})\right) \end{aligned}$$

- Equilibrium no longer describable with a single loss
- Generator maximizes the log-probability of the discriminator being mistaken
- Heuristically motivated; generator can still learn even when discriminator successfully rejects all generator samples

(Goodfellow 2016)

Review: GAN

- GANs are generative models that use supervised learning to approximate an intractable cost function
- GANs can simulate many cost functions, including the one used for maximum likelihood
- Finding Nash equilibria in high-dimensional, continuous, nonconvex games is an important open research problem

Conditional GAN

• Learn P(Y|X)

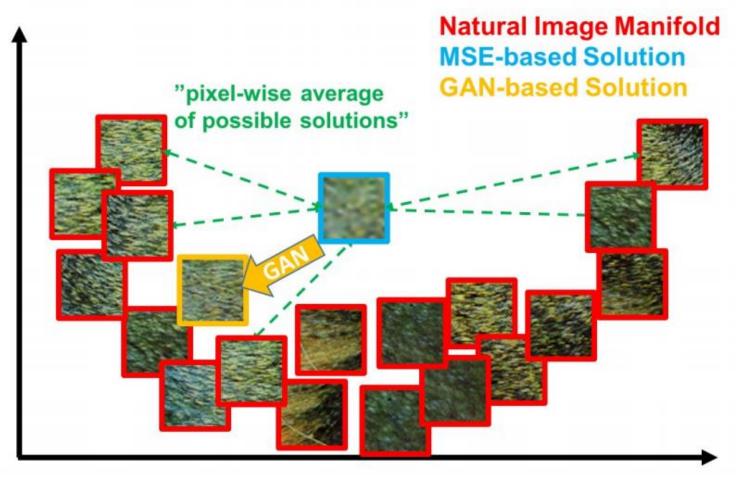
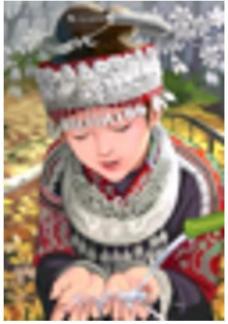


Image Super-Resolution

bicubic (21.59dB/0.6423)



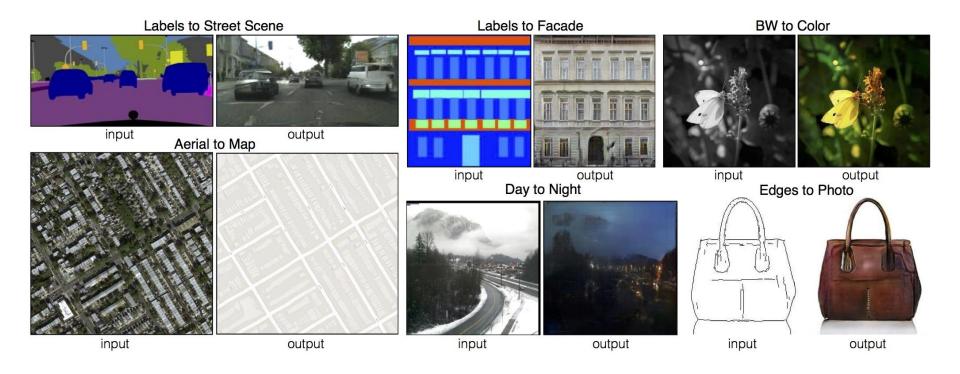
SRResNet (23.53dB/0.7832)

SRGAN (21.15dB/0.6868)

original

Conditional on low-resolution input image

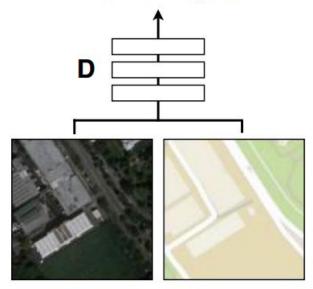
Image-to-Image Translation



- Conditioned on an image of different modality
- No need to specify the loss function

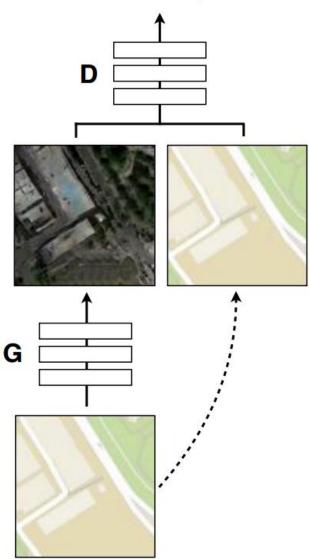
Positive examples

Real or fake pair?



Negative examples

Real or fake pair?

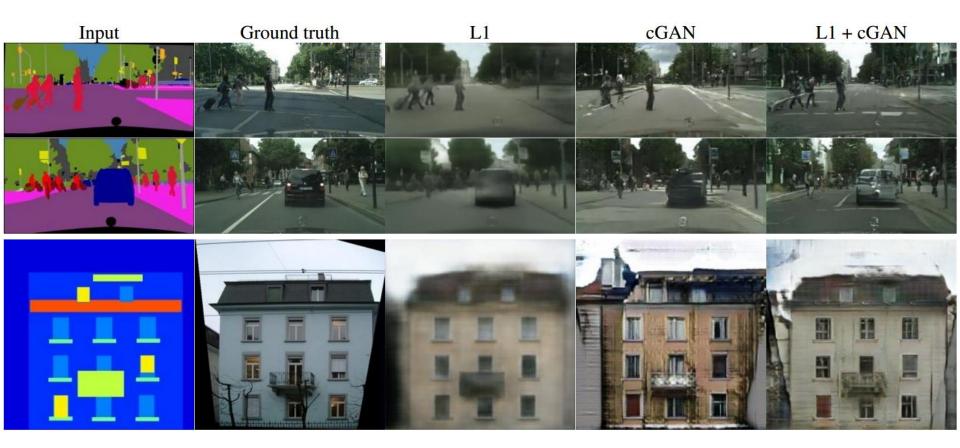


G tries to synthesize fake images that fool **D**

D tries to identify the fakes

Isola et al. CVPR 2017

Label2Image

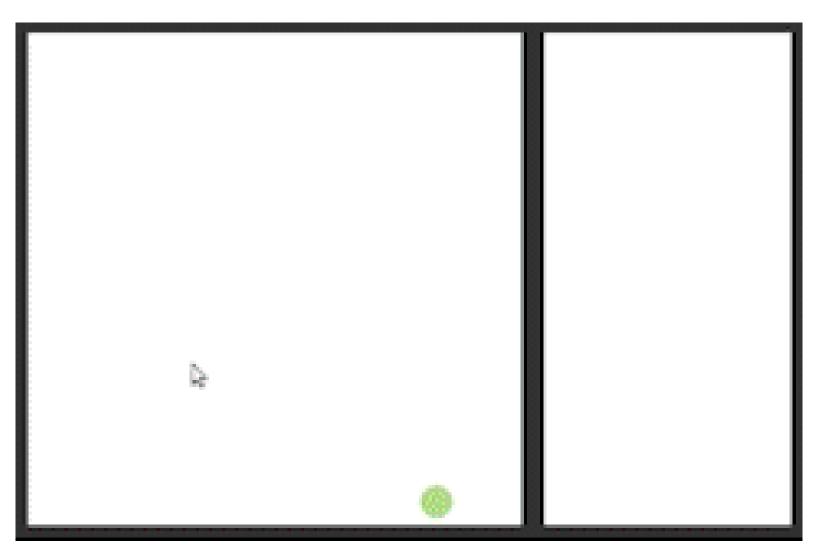


Isola et al. CVPR 2017

Edges2Image

Isola et al. CVPR 2017

Generative Visual Manipulation



Zhu et al. ECCV 2016

(d) smooth transition between the original and edited projection

$$z^* = \underset{z \in \mathbb{Z}}{\operatorname{arg\,min}} \left\{ \underbrace{\sum_{g} \|f_g(G(z)) - v_g\|^2}_{\text{data term}} + \underbrace{\lambda_s \cdot \|z - z_0\|^2}_{\text{smoothness}} + E_D \right\}$$

Zhu et al. ECCV 2016

Text2Image

this small bird has a pink breast and crown, and black primaries and secondaries.

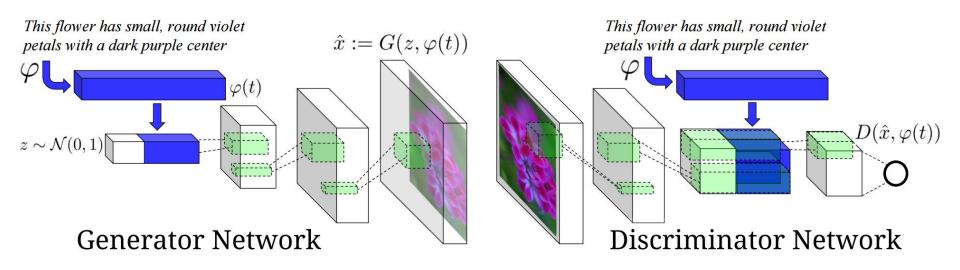
the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is almost all black with a red crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

Reed et al. ICML 2016

Text2Image



- Positive samples:
 - real image + right texts
- Negative samples:
 - fake image + right texts
 - Real image + wrong texts

StackGAN

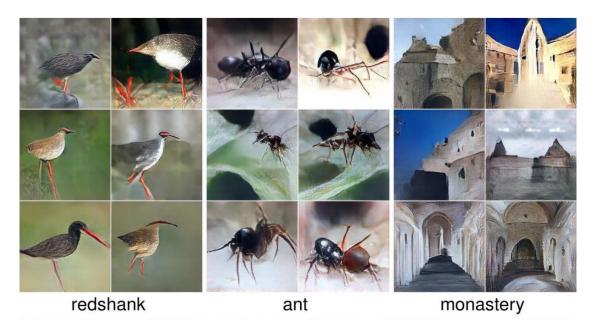
This bird has a yellow belly and tarsus, grey back, wings, and brown throat, nape with a black face This bird is white with some black on its head and wings, and has a long orange beak This flower has overlapping pink pointed petals surrounding a ring of short yellow filaments

<u>Zhang et al. 2016</u>

(a) Stage-I images

(b) Stage-II images

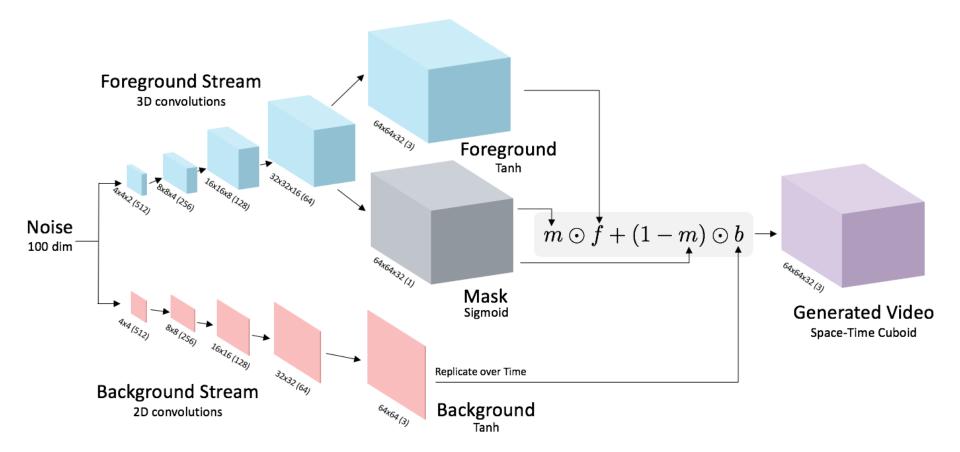
Plug & Play Generative Networks



Nguyen et al. 2016

volcano

Video GAN

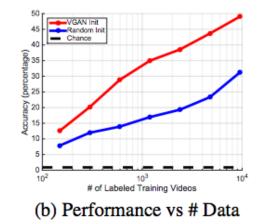


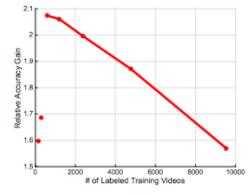
Videos <u>http://web.mit.edu/vondrick/tinyvideo/</u>

[Vondrick et al. NIPS 2016]

Generative Modeling as Feature Learning

Method	Accuracy
Chance	0.9%
STIP Features [10]	43.9%
Temporal Coherence [3]	45.4%
Shuffle and Learn [42]	50.2%
VGAN + Random Init	36.7%
VGAN + Logistic Reg	49.3%
VGAN + Fine Tune	52.1%
ImageNet Supervision [37]	91.4%

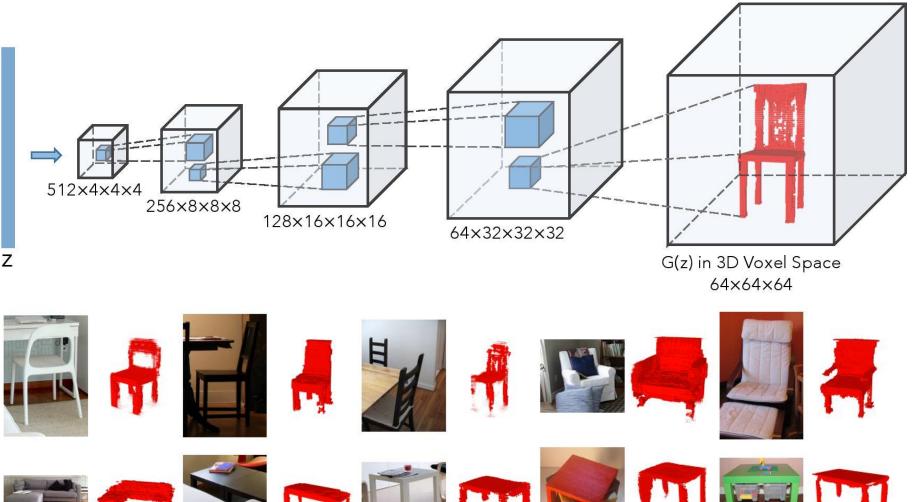




(c) Relative Gain vs # Data

(a) Accuracy with Unsupervised Methods

Shape modeling using 3D Generative Adversarial Network



Wu et al. NIPS 2016

Things to remember

- GANs can generate sharp samples from highdimensional output space
- Conditional GAN can serve as general mapping model X->Y
 - No need to define domain-specific loss functions
 - Handle one-to-many mappings
 - Handle multiple modalities